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Introduction and Background

• Background on Superheavies
• Discussion of recent developments in 

SHE field
• Comparison of nuclear reactions
• Conclusions and future



The existence of certain “magic” numbers of 
neutrons or protons has been known for nuclei, 

prompting the development of the shell model and 
analogies to filled electronic orbits in chemistry
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Nuclear theory at Berkeley, circa 1969



Nuclear theory in the Soviet Union, 
circa 1969



New isotope discovery has been rapid since the mid-
1900’s and routinely operating particle accelerators
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Typical techniques for producing 
Heavy Elements or SHE

• Most facilities use heavy ion accelerators to 
bombard targets and produce fusion/evaporation 
residues for further study, although transfer 
reactions are sometimes possible
—“Cold Fusion” reactions (e.g. 70Zn + 208Pb)
—“Hot Fusion” reactions (e.g. 48Ca + 243Am)

• Separation of “Goodies” from unwanted products
—Separators like DGFS, BGS
—Separators like VASSALISSA, SHIP
—Advanced separators (MASHA …)
—Fast and/or automated chemistry

• Detection and identification of “Goodies”



The Dubna gas-filled separator uses a 
combination of chemistry and physics to 

suppress unwanted reaction products



The addition of the top, bottom, and side detectors increased the geometry for
counting α particles from 50% to 87%.

Veto detectors mounted behind the focal plane were used to identify and reject
light charged particles passing through the separator.

The high-efficiency detector system 



p

• With increasing nuclear charge,
decay by alpha-emission
becomes favored over decay by
SF as one approaches the vicinity
of the closed nuclear shells

• The signature of the decay of a
superheavy nucleus is a series of
alpha decays followed by a
spontaneous fission

• The reaction of 48Ca with 244Pu
results in a compound nucleus
with Z=114 and N=178

The results of the predictions enabled us 
to plan experiments in this region
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Chart of Nuclides about 2004



In the last few years, there have been 
some interesting advances in 
superheavy element research

• Experiments by Dubna/Livermore collaboration with DGFRS on elements 
113, 114, 115, 116 and 118

— Yu. Ts. Oganessian, et al., Phys. Rev. Lett. 83 (1999) 3154; Phys. Rev. C 69 (2004) 054607; Phys. 
Rev. C 69 (2004) 021601; and Phys. Rev. C 74 (2006) 044602.

• Experiments by RIKEN on element 113
— K. Morita, et al., J. Phys. Soc. Japan 73 (2004) 2593. 

• Experiments by PSI/Dubna collaboration on chemistry of element 112
— R. Eichler, et al. in Proceedings of the IX International Conference on Nucleus Nucleus 

Collisions held Aug. 28 - Sep. 1, 2006 in Rio de Janiero, Brazil, Nucl. Phys. A. 787 (2007) 373c.

• Experiments by Dubna/Livermore collaboration on chemistry of Db – the 
decay descendent of element 115

— S.N. Dmitriev, et al., Mend. Commun. 1 (2005) 1; Yu. Ts. Oganessian, et al., Phys. Rev. C 72 
(2005) 034611 and N.J. Stoyer, et al. in Proceedings of the IX International Conference on 
Nucleus Nucleus Collisions held Aug. 28 - Sep. 1, 2006 in Rio de Janiero, Brazil, Nucl. Phys. A. 
787 (2007) 388c.

• Experiments by Jyväskylä and ANL on detailed nuclear spectroscopy of 
254No

— R.-D. Herzberg, et al., Nature 442 (2006) 896 and S.K. Tandel, et al., Phys. Rev. Lett. 97 (2006) 
082502.

• Experiments by GSI on 48Ca + 238U 283112 – S. Hofmann, et al., EPJA 32 (2007) 251.



RIKEN cold fusion reaction to 
produce element 113

preliminary
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Chemistry will play a crucial role in 
exploring the “Island of Stability”

• Current experimental techniques are limited to 
investigation of nuclides with half-lives less than about 
2 hours because random coincidence rate then 
dominates

• If lifetimes of isotopes nearer to the center of the 
“island of stability” are longer, not only will chemistry 
be possible, it will be necessary to isolate the new 
element and reduce counting backgrounds

• Relativistic effects already begin around Au, and will 
dominate the chemistry of superheavy elements, 
although some properties may be predictable already

• Long running times of these kind of experiments 
require as much automated chemistry as possible
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PSI/Dubna 112 experiments using 
COLD

--20 kJ/mol20 kJ/mol112 (112 (--55°°C)C)

-200

-150

-100

-50

0

50

-200

-150

-100

-50

0

50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50
 

Detector #

icegold
219Rn

185Hg

0

10

20

30

40

50
ice

B

219Rn

185Hg

 

 

R
el

. y
ie

ld
 / 

de
te

ct
or

, %

A gold

 T
em

pe
ra

tu
re

, °
C

--20 kJ/mol20 kJ/mol

goldgold iceice

goldgold iceice

112 (112 (--2424°°C)C)

Courtesy R. Eichler

48Ca + 242Pu 114 112
α



In December 2005, we performed another chemical 
experiment to further define the chemical properties of the 

spontaneously-fissioning species
• Separations chemistries were developed by both JINR and LLNL 

groups to separate +4 and +5 groups as well as separate the +5 
group into Nb-like and Ta-like fractions.

– JINR separation scheme used anion exchange chromatography.
– LLNL separation scheme used reverse phase chromatography.

• We used a similar set up as last time
– We used the same reaction (48Ca + 243Am → 288115 + 3n reaction) 

with most irradiations about 40-hour long (2.5 – 6.9 ×1017 ions)
– Reaction products were collected in a Cu block where the 288115 

undergoes five alpha decays to 268Db.
– The surface (10 μm) of the Cu block was shaved and dissolved in 

aqua regia.
• Several tracers (177Ta, 175Hf, 92mNb, 89Zr, 173Lu), carriers (La, Ta, 

Hf, Nb, Zr), and NH4OH were added.
– Cu remained in solution, +3, +4 and +5 ions were carried 

with La(OH)3 precipitate
• Precipitate was washed and dissolved in HCl;  and NH4OH was 

added and La(OH)3 precipitated
• On alternate irradiations, each group performed a +4/+5 

separation
– LLNL chemists used a reverse phase column (details next), or
– JINR chemists used an anion exchange column (details later).



Chemistry results confirm the Db 
assignment and element 115 origin

LLNL Chemistry – 96-hr counts1 SF at 16 hrs – 2 FF
45+5 MeV + 2 n

No SF4.2×101714DEC2005

JINR Method I Chemistry – 96-hr count
Also Group 4 fraction (no SF in 96 hrs)

1 SF at 37 hrs – 2 FF
40+53 MeV + 3 n

4.2×101716DEC2005

JINR Method II Chemistry – 96-hr countsNo SFNo SF4.2×101718DEC2005

JINR Method II Chemistry – 96 hr counts1 SF at 18 hrs – 2FF
66+8 MeV + 2 n

No SF3.9×101720DEC2005

JINR Method II Chemistry – 48-hr count for Nb
fraction and 96-hr count for Ta fractionNo SFNo SF4.4×101722DEC2005

JINR Method II Chemistry – 96-hr count for Nb
fraction, 48-hr count for one Ta fraction, and 
1200-hr count for other Ta fraction

Two Ta fractions
No SF

No SF4.4×101724DEC2005

JINR Method I Chemistry – 96-hr count
Also Group 4 fraction (no SF in 96 hrs)

1 SF at 27 hrs – 1 FF
51 MeV + 1 n

5.2×101712DEC2005

LLNL Chemistry – 96-hr counts
Also Hf fraction (no SF in 48 hrs)

1 SF at 30 hrs – 2 FF
22+3 MeV + 6n

No SF4.5×101710DEC2005

Additional InformationTa fractionNb fractionBeam 
IntegralDate

LLNL Chemistry – 96-hr counts1 SF at 16 hrs – 2 FF
45+5 MeV + 2 n

No SF4.2×101714DEC2005

JINR Method I Chemistry – 96-hr count
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1 SF at 37 hrs – 2 FF
40+53 MeV + 3 n

4.2×101716DEC2005

JINR Method II Chemistry – 96-hr countsNo SFNo SF4.2×101718DEC2005

JINR Method II Chemistry – 96 hr counts1 SF at 18 hrs – 2FF
66+8 MeV + 2 n

No SF3.9×101720DEC2005

JINR Method II Chemistry – 48-hr count for Nb
fraction and 96-hr count for Ta fractionNo SFNo SF4.4×101722DEC2005

JINR Method II Chemistry – 96-hr count for Nb
fraction, 48-hr count for one Ta fraction, and 
1200-hr count for other Ta fraction

Two Ta fractions
No SF

No SF4.4×101724DEC2005

JINR Method I Chemistry – 96-hr count
Also Group 4 fraction (no SF in 96 hrs)

1 SF at 27 hrs – 1 FF
51 MeV + 1 n

5.2×101712DEC2005

LLNL Chemistry – 96-hr counts
Also Hf fraction (no SF in 48 hrs)

1 SF at 30 hrs – 2 FF
22+3 MeV + 6n

No SF4.5×101710DEC2005

Additional InformationTa fractionNb fractionBeam 
IntegralDate

5 SF events were in Group 5 fractions, 3 of which were in Ta fractions.
There were 0 SF events in Group 4 fractions or Nb fractions.



Jyväskylä/ANL work – single particle level from 
above the Z=114 “gap” identified using detailed 

nuclear spectroscopy

Large 
Spin-Orbit 
coupling

Reduced 
Spin-Orbit 
coupling

2.2 MeV?



Recent GSI results
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Comparison of cold and hot fusion 
cross-sections
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Spontaneous fission half-lives 
indicate shell closure
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Future

• 58Fe + 244Pu DGFRS experiment completed 
March 2007 with no observed element 120 
decay sequences

• 48Ca + 244Pu chemistry experiment in Dubna
(PSI/Dubna/LLNL) to investigate gas phase 
chemistry of element 112 (with first observed 
gas-phased chemistry of element 114!)

• MASHA mass measurement
• Fast automated chemistry (element 114)
• Reactions with RIBs
• …



We’ve only made it part way to the 
Island of Stability
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