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1. Why a Statistical Theory?
In medium-weight and heavy nuclei, neutron time-of-flight
and proton scattering data display sequences of narrow and
narrowly spaced resonances of the same spin and parity.

E. Fermi et al., Proc. Roy. Soc. A 146 (1934)  483,
ibid. 149 (1935)  522

J. B. Garg et al., Phys. Rev. 134 (1964)  B 985
W. M. Wilson et al., Nucl. Phys. A 245 (1975)  285



J. B. Garg et  al., Phys. Rev. 134 (1964) B 985. 

Niels Bohr: Numerous
narrow resonances are
incompatible with an
independent-particle
model. In the compound
nucleus, many nucleons
interact strongly! The
nucleus equilibrates
before it decays.
Formation and decay of
the compound nucleus
are independent

processes.

N. Bohr, Nature 137 (1936) 344.

Nature 137 (1936)  351

Garg et al., Phys. Rev. 134 (1964) B 985



Bohr’s compound-nucleus idea formalized in the Hauser-Feshbach
formula for the average reaction cross section.

Energy average (brackets) over many resonances. Open channels a,b,c specified  by 
fragmentation and internal states of fragments (labels α, β), by angular momentum of relative 
motion, by total spin J. Differential cross section is bilinear in S(J). Assume <S(J)S*(J’)> = 0
for J ≠ J’ and that  <|S(J)ab|2> factorizes. 

< dσαβ / dΩ > = ∑ (coefficients) (Ta Tb / ∑ Tc) Pl (cos θ) .

W. Hauser and H. Feshbach, Phys. Rev. 87 (1952)  366

And there are statistical cross section fluctuations (Ericson).

With increasing excitation energy, average nuclear level density increases, average spacing
d between resonances decreases. At the same time, total resonance width Γ increases (ever
more decay channels open up). Transition from isolated resonances ( d >> Γ) to weakly
overlapping resonances (Γ ≈ d) to strongly overlapping resonances (Γ >> d). 

For Γ >> d “Ericson fluctuations” predicted.

T. Ericson, Phys. Rev. Lett. 5 (1960)  430 and Ann. Phys. (N.Y.) 23 (1963) 390
D. Brink and R. O. Stephens, Phys. Lett. 5 (1963) 77



Such fluctuations were actually found experimentally several years
later:

O. Häusser, A. Richter, W. von Witsch, W. J. Thompson, Nucl. Phys. A 109 (1968) 329



Task of theory:

(i) Derive properties of average cross section and of cross-section
fluctuations from dynamical theory of resonances.

(ii) Establish limits of validity, search for generalizations
(preequilibrium reactions). Include direct reactions and
symmetry violation.

Shell model is useless: Dimension of matrices would be about 106, required accuracy of
matrix elements of residual interaction and required accuracy of numerical calculation
(about 10 eV) are unattainable in the forseeable future.

Another starting point is needed: Random-matrix theory (RMT)
describes spectral fluctuation properties of resonances correctly. 



Spectral Fluctuations:

O. Bohigas and M. J. Giannoni, Lecture Notes in Physics 209 (1984), Springer-Verlag, Heidelberg



A theory that makes generic statements about eigenvalues and
eigenfunctions of an arbitrary Hamiltonian matrix. Will here be applied
to the resonances seen in slow neutron and proton scattering.

Random Matrix Theory (Wigner).

Consider matrix representation Hμν of Hamiltonian in Hilbert space, with  μ, 
ν = 1, ... N and N  À 1. Time-reversal invariance implies   Hμν = Hνμ real. 
No further symmetries. 

Take ensemble of such Hamiltonians. Should not have preferred
direction in Hilbert space: Invariant under orthogonal
transformations. “Gaussian orthogonal ensemble” (GOE).

N exp [ - (N / λ2) Trace (H2)] Πμ·ν d Hμν

Every state interacts with every other state. Single parameter lambda determines mean level density.
Gaussian cutoff for convenience but results very general: Universality and ergodicity. Quantitative
and parameter-free predictions possible for local spectral fluctuation measures.



Quantitative Predictions:
(N → ∞)
(a) Distribution of spacings of

neighbouring levels
(nearest-neighbor spacing
distribution)

s is the level spacing in units of the 
average level spacing. Note the level
repulsion at small spacings. 

(b) Variance of the number of
levels in an interval of length L 

L is measured in units of the mean level
spacing. The variance grows only
logarithmically with L. Below, we use
another related measure (“Dyson-Mehta
Statistic” or “Delta3-Statistic”).

GOE

GOE

(c) Projections of eigenfunctions
onto fixed vector in Hilbert
space have Gaussian distribution



R. Haq, A. Pandey, O. Bohigas,
Phys. Rev. Lett. 43 (1982) 1026
and Nuclear Data for Science
and Technology, Riedel (1983) 209.

Evidence for GOE statistics in nuclei
Resonances near neutron threshold and near Coulomb barrier
for protons.

There is also evidence supporting Gaussian distribution
of eigenvectors (“Porter-Thomas distribution” of widths). 



Program for a statistical theory:
Input: An ensemble of GOE Hamiltonians HGOE for the resonances.
It replaces the actual nuclear Hamiltonian.

Theory cannot reproduce actual measured cross section but can only yield average cross section
and cross section fluctuation (variance), both calculated as ensemble averages over the GOE.

Assume that resonances with different quantum numbers are described by uncorrelated GOE
Hamiltonians. Then elements S(J) and S(J’) of the scattering matrix for different spins J ≠ J’
are uncorrelated, and compound-nucleus cross section is symmetric about 90 degrees c.m., in
keeping with Hauser-Feshbach formula and with experimental evidence.

Task:
For each J express S(J) as function of HGOE. Calculate ensemble
averages <S(J)>, variance <|S(J)|2> - |<S(J)>|2, and  fourth moment
of S(J) as well as energy correlators.
From now on label J fixed and omitted.



2. Model for Resonance Reactions
Several formal theories of resonance reactions available.

P. L. Kapur and R. Peierls, Proc. R. Soc. London A 166 (1938) 277
E. P. Wigner and L. Eisenbud, Phys. Rev. 72 (1947)  29
J. Humblet and L. Rosenfeld, Nucl. Phys. 26 (1961) 529 

But we need a dynamical theory that relates Hamiltonian for the
resonances and S-matrix. Two candidates.

H. Feshbach, Ann. Phys. (N.Y.)  5 (1958)  357 and 19 (1962)  287
C. Mahaux and H. A. Weidenmüller, Shell-Model Approach to Nuclear Reactions, North Holland, Amsterdam (1969)

Here we follow largely MW because exact expression for compound-nucleus cross
section has been worked out in this framework. But other approaches were used, too,
especially Humblet-Rosenfeld (Moldauer) and Feshbach.



●

→ ● ●

○

Dynamical model for resonances (schematic): In shell model, a large
number of quasibound states.  

(two-body interaction)

Scattering state Quasibound state



Scattering states are dynamically coupled with each other.

That coupling results in non-resonant unitary background matrix
S(0)

ab(E) with smooth (negligible) dependence on energy E.
Contributes to direct reactions.

N >> 1 quasibound states {μ} are dynamically coupled with each
other.
That coupling described by Hamiltonian matrix Hμν. (This only
part of total Hamiltonian!)

Scattering states and quasibound states are dynamically coupled.
Complex matrix elements Xaμ with negligible energy dependence. 



Without further specification of Hμν this yields

Many-resonance formula for the scattering matrix:

Sab(E) = S(0)
ab – 2iπ ∑μν Xaμ (Dμν(E))-1 Xνb ,

Dμν(E) = E δμν – Hμν + iπ ∑c Xμc Xcν .

Unitary S-matrix Sab with N resonances and “width matrix” 2π ∑c XμcXcν.
“Effective Hamiltonian” Hμν – iπ ∑c Xμc Xcν .

Statistical Theory: Replace H → HGOE and generate ensemble of
S-matrices. Technical challenge: Calculate ensemble averages of S,
of |S|2, higher moments and energy correlation functions for all values
of Γ / d. Average <Sab> easy, higher moments not.

Identify theoretical ensemble averages with experimental energy averages.



3. Average S-matrix. Direct Reactions
Write Sab(E) = < Sab(E) > + Sfl

ab(E)   so that   <Sfl
ab(E)> = 0 and

<|Sab(E)|2> = |<Sab(E)>|2 + <|Sfl
ab(E)|2> . 

Physical interpretation: <Sab(E)> (energy average!) describes fast part
of reaction (uncertainty principle); Sfl

ab(E) describes slow part (decay
of the long-lived compound nucleus).

Simple models involving only few degrees of freedom can be used to calculate <Sa b(E)>:
Optical model of elastic scattering for diagonal part, DWBA or coupled channels approach
for non-diagonal part. Assume <Sab(E)> to be known, to be independent of energy.
<Sab(E)> → <Sab> serves as input of statistical theory.

Statistical Theory: Predict < | Sfl
ab(E)|2>, higher moments, and energy

correlators from <Sab>.

RMT always predicts fluctuations in terms of mean values (spectral fluctuations in terms of
the average level spacing d, for instance).



Unitarity deficit of <Sab>: ∑b |<Sab>|2 < 1.

Easy to see for the single-channel case. Imaginary part of optical model describes loss of
scattering amplitude due to compound-nucleus formation. Imaginary part of optical model
differs from zero even for single-channel case!

Time scales in the statistical model:

Energy dependence of <Sab(E)> realistically given by passage time of projectile through
target. For <Sab(E)> to be independent of energy,

that time must be very short in comparison with decay time of
compound nucleus.

GOE is an equilibrium model (all states are coupled to each other). More realistic: A
hierarchy of states of increasing complexity (2p 1h states, 3p 2h states etc. etc.). Thus
GOE model realistic only if decay time >> equilibration time (about h / (several MeV)).

Statistical model is limited to energies up to 10 or 20 MeV above
neutron threshold. At higher energies, preequilibrium reactions are
important.



Treatment of direct reactions.

Case with direct reactions (non-diagonal matrix <Sdir
ab>) reduced

exactly to case without direct reactions (<Sab> diagonal).

Matrix Pab = δab - ∑c <Sdir
ac> <Sdir

bc>* is hermitian. Diagonalized
by energy-independent unitary transformation U. Then (USdirUT)ab is
identical to S-matrix Sab without direct reactions (<Sab> ∝ δab),

(USdirUT) ab = Sab = δab – 2iπ ∑μν Waμ D-1
μν Wνb ,

Dμν(E) = E δμν – (HGOE)μν + iπ ∑c WμcWcν .

With UX → W, Waμ is real. Moreover, ∑μ WaμWbμ ∝ δab. Cross
section ∝ |(USUT)ab|2 given in terms of S and U. 

R. G. Satchler, Phys. Lett. 7 (1963) 55
Z. Vager, Phys. Lett. B 36 (1971) 269
M. Kawai, A. K. Kerman, K. W. McVoy, Ann. Phys. (N.Y.) 75 (1973) 156
C. Engelbrecht and H. A. Weidenmüller, Phys. Rev. C 8 (1973) 859
H. Nishioka and H. A. Weidenmüller, Phys. Lett. B 157 (1985) 101



4. Compound Nucleus Cross Section
Input: The diagonal elements <S>aa or the “transmission coefficients”

Ta = 1 - |<S>aa|2.

Ta (unitarity deficit of <Saa>) gives the probability of compound-nucleus formation in
channel a. Number of input parameters = number of open channels.

Parameters of the model: Matrix elements Wμa and parameter λ?

Total number = 1 + (N times number of channels). Is model underdetermined? NO!!!
HGOE is orthogonally invariant, so all moments of S can only depend on orthogonal
invariants formed from the Wμa. The only such invariants are the bilinear forms
∑μ WaμWbμ ∝ δab. Moreover, S is dimensionless; so all moments can depend only on
the dimensionless ratios ∑μ (Wa μ)2 / λ. (The only way in which GOE parameter λ enters).

Parameters of the model: The dimensionless ratios ∑μ (Waμ)2 / λ.

Number of parameters = number of open channels: The model is well
defined!



Calculate moments of Sab(E) by averaging over HGOE. Difficulty: N(N+1)/2 Gaussian random
variables appear in denominator of Sab(E).

Approaches:

(ι) Γ << d: Perturbation expansion and attempts to go beyond. Use
Wigner-Dyson distribution of eigenvalues of Hμν and
Porter-Thomas distribution of partial widths.

A. M. Lane and J. E. Lynn, Proc. Phys. Soc. London LXX 8-A (1957)  557
P. A. Moldauer, Phys. Rev. 123 (1961) 968; ibid. 129 (1963) 754; ibid, 135 (1964) B 642; ibid. 136 (1964) B 947;

ibid.  157 (1967) 907; ibid. 171 (1968) 1164; ibid. C 11 (1975) 426; ibid. C 12 (1975) 744;
Rev. Mod. Phys. 36 (1964) 1079; Phys. Rev. Lett. 18 (1967) 249; Nucl. Phys. A 344 (1980) 185.

G. Reffo, F. Fabbri, H. Gruppelaar, Lett. Nuov. Cim. 17 (1976) 1 

<|Sfl
ab|2> = Ta Tb (∑c Tc)-1 Wab

Wab is “width fluctuation correction”. W = 1 for single channel.
Waa = 3 for more than one channel and isolated resonances.
Parametrizations for Wab available.

Moldauer tried to go beyond Γ << d using pole expansion of S-matrix. But pole parameters
(positions and residues) linked by unitarity. Unresolved difficulty.



(ii) Γ >> d: Theories based on average unitarity or using an
asymptotic expansion in d / Γ .

M. Kawai, A. K. Kerman, K. W. McVoy, Ann. Phys. (N.Y.) 75 (1973) 156
D. Agassi and H. A. Weidenmüller, Phys. Lett. B 56 (1975) 305
D. Agassi, H. A. Weidenmüller, G. Mantzouranis, Phys. Lett. C 22 (1975) 145
H. A. Weidenmüller, Ann. Phys. (N.Y.) 158 (1984) 120 

<|Sfl
ab|2> = (1 + δa b) Ta Tb (∑c Tc)-1 .

Width fluctuation correction equals two, in keeping with Vager and experimental data.
Corrections from systematic expansion in inverse powers of (d / Γ) ∝ (∑c Tc)-1 .

Elements of scattering matrix have Gaussian distribution. Second
moment yields for normalized cross-section autocorrelation function
the value (Γ = (d/(2π) ∑c Tc)

< |Sfl
a b(E + ε)|2 |Sfl

a b(E)|2> / < |Sfl
a b(E)|4> = 1 / ( 1 + (ε/Γ)2) .

Complete derivation of Ericson’s model for cross-section fluctuations.
Predicts exponential decay in time of compound nucleus.



(iii) Fit formulas with parameters determined by numerical simulation.

J. W. Tepel, H. M. Hofmann, H. A. Weidenmüller, Phys. Lett. B 49 (1974) 1
H. W. Hofmann, J. Richert, J. W. Tepel, H. A. Weidenmüller, Ann. Phys. (N.Y.) 90 (1975) 403
H. W. Hofmann, J. Richert, J. W. Tepel, Ann. Phys. (N.Y.) 90 (1975) 391
P. A. Moldauer, Phys. Rev. papers as cited above

Assume that cross section factorizes,

<|Sfl
ab(E)|2> = Va Vb (∑c Vc)-1 [ 1 + δab (Ra – 1)]

so that unitarity yields

Ta = Va + (Va)2 (∑c Vc)-1 (Ra – 1) ,

and use the Ra as fit parameters.

Reasonable fits obtained for Ra = 1 + 2/(1 + Ta
1/2) but better parametrizations available.

Similarly for <Sfl
aa (Sfl

bb)*> (needed for direct reactions).



(iv) Exact result for two-point function

J. J. M. Verbaarschot, H. A. Weidenmüller, M. R. Zirnbauer, Phys. Lett. 149 B (1984) 263 and Phys. Rep. 129 (1985) 367
J. J. M. Verbaarschot, Ann. Phys. 168 (1986) 368

Obtain exact expression for <Sfl
ab(E+ε) (Sfl

cd(E))*> with help of
“supersymmetry” integration technique (Efetov):

<Sfl
ab(E+ε) (Sfl

cd(E))*>  = threefold integration involving Tc’s
and <Saa>, <S*

cc> .

(1) Limit of almost isolated resonances: Agreement with Moldauer.
(2) Γ >> d: Agreement with asymptotic expansion formula (including higher-order terms).
(3) Results coincide (within statistical errors) with fit formulas by Hofmann et al.
(4) For 2 channels and several choices of transmission coefficients, results agree

numerically with those of maximum entropy approach (next transparency).

The problem is partly solved but … nearly impossible to calculate
higher moments of Sfl!



(v) Maximum Entropy Approach

P. A. Mello,  P. Pereyra, T. H. Seligman, Ann. Phys. (N.Y.) 161 (1985) 254
W. A. Friedman and P. A. Mello, Ann. Phys. (N.Y.) 161 (1985) 254

Use unitarity, symmetry, ergodicity, causality (<Sk> = <S>k) of
Sab(E) and a maximum entropy approach to derive complete
probability distribution of S-matrix elements. The probability
density P(S) is

P(S) ∝ [det ( 1 - <S><S*>)](n+1)/2 / |det (1 - <S> S*)|n+1 .

In Ericson regime, this yields Hauser-Feshbach formula and
Gaussian distribution of S-matrix elements.

Strong indications that this is the correct formula. So problem is solved completely?
Drawbacks: (i)  Integration kernel is extremely difficult to handle.

(ii) The approach does not yield information about energy correlation of
S-matrix elements.



5. Summary. Solved and Unsolved
Problems

Theory: Consistent results from different approaches. Complete results for <|Sab|2>.
Full theoretical understanding of Ericson fluctuations. Cross-section
correlation functions missing for Γ ≈ d.

Comparison with experiment: Very thorough corroboration for Γ << d and in
Ericson regime. None for Γ ≈ d. But test using microwave billiards under
way (Darmstadt).

Extensions: Isobaric analog resonances, isospin violation for Γ >> d, parity
violation in epithermal neutron scattering.

Preequilibrium reactions: Require introduction of hierarchies of states with
additional parameters. Conceptual simplicity of compound-nucleus model
lost.

Compound-nucleus scattering is very general problem, especially in Ericson regime:
Appears in passage of light through disordered media, transmission of
electrons through mesoscopic devices, etc.
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